Эритроциты у человека разрушаются в

Где разрушаются эритроциты у человека



Разрушение эритроцитов у здорового человека.

Основные клетки крови человека — эритроциты циркулируют в крови максимум 120 суток, в среднем 60—90 дней. Процесс старения, а в дальнейшем — разрушение эритроцитов у здорового человека связано с угнетением образования в них количества специфического вещества — АТФ в ходе метаболизма глюкозы в этой этих форменных элементах.

Оглавление:

Сниженное образование АТФ, ее дефицит нарушает в клетке процессы, которые обеспечивают ее энергией, — к ним относятся: восстановление формы эритроцитов, транспорт катионов через их мембрану и защиту содержимого эритроцитов от процессов окисления, их мембрана утрачивает сиаловые кислоты. Старение и разрушение эритроцитов вызывает также изменение мембраны эритроцитов: из первоначальных дискоцитов они превращаются в так называемые эхиноциты, т. е. эритроциты, на поверхности которых образуются многочисленные специфические выступы, и выросты.

Причиной образования эхиноцитов помимо снижения воспроизводства молекул АТФ в клетке эритроцита при его старении является усиленное образование вещества лизолецитина в плазме крови человека, и повышенное содержание в ней жирных кислот. Указанные факторы изменяют соотношение поверхности внутреннего и внешнего слоев мембраны клетки эритроцита за счет увеличения поверхности ее внешнего слоя, что и ведет к появлению выростов эхиноцитов.

По степени выраженности преобразования мембраны и приобретенной формы эритроцитов различают эхиноциты I, II, III классов, а также сфероэхиноциты I и II классов. Во время старении клетка последовательно проходит все этапы превращения в клетку-эхиноцит III класса, она теряет способность изменять и восстанавливать присущую ей дисковидную форму, в конечном итоге превращается в сфероэхиноцит и происходит окончательное разрушение эритроцитов. Устранение дефицита глюкозы в клетке эритроцита легко возвращает эхиноциты I—II классов к исходной форме дискоцита. Клетки эхиноциты начинают появляться по результатам общего анализа крови, например, в консервированной крови, которая сохраняется в течение нескольких недель при температуре 4°С. Это связано с процессом уменьшением образования АТФ внутри консервированных клеток, с появлением в плазме крови вещества лизолецитина, который также ускоряет старение и разрушение эритроцитов. Если произвести отмывание эхиноцитов в свежей плазме, то уровень АТФ в клетке восстанавливается, и уже через несколько минут эритроциты возвращают себе форму дискоцитов.

Разрушение эритроцитов. Место разрушения эритроцитов.



Стареющие эритроциты утрачивают свою эластичность, вследствие чего подвергаются разрушению внутри сосудов (происходит внутрисосудистый гемолиз эритроцитов) или же они становятся добычей макрофагов в селезенке, которые захватывают и разрушают их, и купферовских клетках печени и в костном мозге (это уже внесосудистый или внутриклеточный гемолиз эритроцитов). С помощью внутриклеточного гемолиза в сутки разрушается от 80 до 90 % старых эритроцитов, которые содержат примерно 6—7 г гемоглобина, из них освобождается в макрофагами до 30 мг железа. После процесса отщепления от гемоглобина содержащийся в нем гем превращается в желчный пигмент, называемым билирубином (определяемым биохимическим анализом крови), который поступает с желчью в просвет кишечника и под влиянием его микрофлоры превращается в стеркобилиноген. Это соединение выводится из организма с калом, под влиянием воздуха и света превращаясь в стеркобилин. При преобразовании 1 г гемоглобина образуется около 33 мг билирубина.

Разрушение эритроцитов в 10—20 % происходит с помощью внутрисосудистого гемолиза. В этом случае гемоглобин поступает в плазму, где образует с плазменным гаптоглобином биохимический комплекс гемоглобин—гаптоглобин. В течение десяти минут 50 % данного комплекса поглощается из плазмы клетками паренхимы печени, что предотвращает поступление свободного гемоглобина в почки, где может вызвать тромбирование их нефронов. У здорового человека в составе плазме содержится около 1 г/л гаптоглобина, несвязанный с ним в плазме крови гемоглобин не более 3—10 мг. Молекулы гема, которые высвободились из связи с глобином во время внутрисосудистого гемолизе, связываются уже белком плазмы — гемопексином, которым транспортируются в печень и также поглощаются паренхиматозными клетками этого органа, и подвергаются ферментному преобразованию до билирубина.

ЭРИТРОЦИТЫ | Энциклопедия Кругосвет

ЭРИТРОЦИТЫ – красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2–7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5–6 млн. эритроцитов. Они составляют 44–48% общего объема крови.

Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде ок. 34%. [В пересчете на сухой вес содержание гемоглобина в эритроцитах – 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12–16 г (12–16 г%), причем у мужчин оно несколько выше, чем у женщин.] Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом. Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела.

В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз – образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника).



Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро – за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг. Срок созревания эритроцитов в костном мозге – от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания – составляет 4–5 дней. Срок жизни зрелого эритроцита в периферической крови – в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться.

Бóльшая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин – красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).

Состав крови

Плазма крови – это прозрачная бесцветная жидкость, на 90% состоящая из воды, в которой растворены органические и неорганические соединения.

Состав плазмы по содержанию солей близок к морской воде. Важнейшие соли плазмы – хлориды Na, K и Ca. В нормальных условиях общая концентрация солей в плазме и в клетках крови одинакова.

Повышение или понижение содержания Na опасно для здоровья и жизни человека. Долго находящийся в море и лишенный пресной воды человек погибает от того, что в его крови увеличивается содержание солей. Вода из клеток и тканей устремляется в кровь, и организм обезвоживается.

Эритроциты – красные кровяные клетки – очень малы, в 1мм в кубе крови содержится до 5 млн. эритроцитов. Зарождаются в красном костном мозге, живут около 120 дней и разрушаются в селезенке и печени.

Эритроциты – безъядерные клетки в виде уплощенных дисков диаметром 7-8 мкм, толщиной 2 мкм. Они доставляют кислород из легких к клеткам, забирают у последних углекислый газ и переносят его в легкие. Количество эритроцитов у мужчин – 4,5-5,0 триллионов на литр, у женщин – 4,0-4,5 триллионов на литр.



Снаружи эритроцит покрыт мембраной, которая легко пропускает газы, воду, глюкозу и др. вещества. Внутри эритроцита содержится особый белок – гемоглобин, в состав которого входит железо. Именно гемоглобин придает крови красный цвет.

Диаметр отдельного эритроцита равен 7,2-7,5 мкм, толщина — 2,2 мкм, а объем – около 90 мкм3. Общая поверхность всех эритроцитов достигает 3000 м2, что в 1500 раз превышает поверхность тела человека. Такая большая поверхность эритроцитов обусловлена их большим числом и своеобразной формой. Они имеют форму двояковогнутого диска и при поперечном разрезе напоминают гантели. При такой форме в эритроцитах нет ни одной точки, которая бы отстояла от поверхности более чем на 0,85 мкм. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов.

В крови у мужчин содержится в среднем 5х1012/л эритроцитов (в 1 мкл), у женщин – около 4,5х1012/л (в 1 мкл). Такое количество эритроцитов, уложенное цепочкой, 5 раз обовьют Земной Шар по экватору.

Лейкоциты – белые ( бесцветные ) кровяные клетки – состоят из цитоплазмы и ядра. В 1 мм в кубе крови содержитсятыс. лейкоцитов. Образуются в костном мозге. Способны сами активно двигаться, могут проникать сквозь стенку капилляров и выходить в межклеточное пространство. По способу движения напоминает амебу.

Лейкоциты (лимфоциты, моноциты, гранулоциты) имеют шаровидную форму и участвуют в защитной функции организма. Существует несколько разновидностей лейкоцитов. У взрослого человека в 1 л крови насчитывается 4,0-9,0 миллиардов лейкоцитов.



Лейкоциты выполняют важную функцию защиты организма от проникновения болезнетворных микробов. При любом повреждении кожи в ранку попадают бактерии. В этом случае лейкоциты устремляются к поврежденному участку. Лейкоцит захватывает и переваривает микробину. Этот процесс называют фагоцитозом, а белые кровяные клетки – фагоцитами. Они обеспечивают иммунитет.

У взрослых кровь содержит 4-9×109/л в 1 мкл) лейкоцитов, т. е. их враз меньше, чем эритроцитов. Увеличение их количества называют лейкоцитозом, а уменьшение – лейкопенией.

Лейкоциты делят на 2 группы: гранулоциты (зернистые) и агранулоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эозинофилы и базофилы, а в группу агранулоцитов – лимфоциты и моноциты.

Установлено, что 1 фагоцит может захватитьбактерий. Если он поглащает больше, чем может переварить, то он гибнет. Смесь погибших и живых фагоцитов называется гноем.

К группе лейкоцитов относят также лимфоциты – белые кровяные клетки, находящиеся преимущественно в лимфе. Лимфоциты также играют важную роль в защитных реакциях организма.



Тромбоциты отвечают за процесс свертывания крови. 1 л крови содержит 180,0-320,0 миллиардов тромбоцитов.

В организме мужчины содержится 5,0-5,5 л крови, женщины – 4,0-4,5 л (6-8% от массы тела). Потеря 50% крови и более приводит к смерти.

Лимфоциты составляют% белых кровяных телец. У взрослого человека содержится 1012 лимфоцитов общей массой 1,5 кг. Лимфоциты в отличие от всех других лейкоцитов способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 и более лет (некоторые на протяжении всей жизни человека).

Лимфоциты представляют собой центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают удивительной способностью различать в организме свое и чужое вследствие наличия в их оболочке специфических участков – рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память, уничтожение собственных мутантных клеток и др.

Все лимфоциты делят на 3 группы: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

Место образования и содержание в 1 мм3 крови

Продолжи- тельность функциони-

Плазма крови по объему составляет 55-60% (форменные элементы – 40-45%). Это желтоватая полупрозрачная жидкость. Белки плазмы регулируют распределение воды между кровью и тканевой жидкостью, придают вязкость крови, играют роль в водном обмене. Некоторые из них ведут себя как антитела, обезвреживающие ядовитые выделения болезнетворных микроорганизмов.

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей. В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, -альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме – так называемого остаточного азота – приходится на долю мочевины. При недостаточности функции почек содержание остаточного азота в плазме крови увеличивается.



Содержание органических и неорганических веществ плазмы крови за счет деятельности различных регулирующих систем организма поддерживается на относительно постоянном уровне.

Белок фибриноген играет важную роль в свертывании крови. Плазма, лишенная фибриногена, называется сывороткой.

Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным пигментом. Он находится внутри эритроцитов, а не в плазме крови, что обеспечивает уменьшение вязкости крови и предупреждает потерю организмом гемоглобина вследствие его фильтрации в почках и выделения с мочой.

По химической структуре гемоглобин состоит из 1 молекулы белка глобина и 4 молекул железосодержащего соединения гема. Атом железа гема способен присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т. е. оно остается двухвалентным.

В крови здоровых мужчин содержится в среднем 14,5% гемоглобина (145 г/л). Эта величина может колебаться в пределах от 13 до 16 (г/л). В крови здоровых женщин содержится в среднем 13 г гемоглобина (130 г/л). Эта величина может колебаться в пределах от 12 до 14.



Гемоглобин синтезируется клетками костного мозга. При разрушении эритроцитов после отщепления гема гемоглобин превращается в желчный пигмент биллирубин, который с желчью поступает в кишечник и после превращений выводится с калом.

Соединение гемоглобина с газами

В норме гемоглобин содержится в виде 2-х физиологических соединений.

Гемоглобин, присоединивший кислород, превращается в оксигемо-глобин – НbО2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным – Нb. Он находится в венозной крови, которая имеет более темный цвет, чем артериальная.

Гемолизом называют разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной.

В естественных условиях в ряде случаев может наблюдаться так называемый биологический гемолиз, развивающийся при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т. п.



Образование эритроцитов

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

“Ярославский государственный университет им. П.Г. Демидова”

Реферат на тему

Образование, продолжительность жизни и разрушение эритроцитов



Студенты группы Б41

Процесс образования эритроцитов в организме, протекающий в кроветворной ткани костного мозга, называется эритропоэзом. Эритроциты образуются в кроветворных тканях – желточном мешке у эмбриона, печени и селезенке у плода и красном костном мозгу плоских костей у взрослого. Во всех этих органах содержатся так называемые плюрипотентные стволовые клетки–общие предшественники всех клеток крови. Первоначально происходит процесс пролиферации (разрастания ткани путем размножения клетки). Затем из стволовых гемопоэтических клеток (клеток – родоначальниц кроветворения) формируется мегалобласт (крупное красное тельце, содержащее ядро и большое количество гемоглобина), из которого в свою очередь образуется эритробласт (ядросодержащая клетка), а потом и нормоцит (тельце, наделенное нормальными размерами). Как только нормоцит утрачивает свое ядро, он тут же превращается в ретикулоцит – непосредственного предшественника красных кровяных клеток. Ретикулоцит попадает в кровеносное русло и трансформируется в эритроцит. На его трансформацию уходит околочасов. Созревшие эритроциты циркулируют в крови в течение 100–120 дней, после чего фагоцитируются клетками ретикулоэндотелиальной системы костного мозга (а при патологии–также печени и селезенки). Однако не только эти органы, но и любая другая ткань способна разрушать кровяные тельца, о чем свидетельствует постепенное исчезновение «синяков» (подкожных кровоизлияний). В организме взрослого человека насчитывается 25–1012 эритроцитов, и каждые 24 ч обновляется примерно 0,8% их числа. Это означает, что за 1 мин образуется 160 • 106 эритроцитов.

После кровопотери и при патологическом укорочении жизни эритроцитов скорость эритропоэза может возрастать в несколько раз. Мощным стимулятором эритропоэза служит снижение парциального давления O2 (т. е. несоответствие между потребностью ткани в кислороде и его поступлением). При этом возрастает содержание в плазме особого вещества, ускоряющего эритропоэз,–эритропоэтина. У человека эритропоэтин представляет собой термостабильный гликопротеин с молекулярной массой околои содержанием сахара 30%. Белковая часть эритропоэтина включает 165 аминокислотных остатков; недавно была установлена его аминокислотная последовательность. Главную роль в синтезе эритропоэтина играют почки ; при двусторонней нефрэктомии концентрация эритропоэтина в крови резко снижается. Синтез эритропоэтина угнетается также при различных почечных заболеваниях. Раньше считалось, что почки сами по себе не вырабатывают эритропоэтин, а выделяют некий фермент, расщепляющий глобулин плазмы с образованием этого гормона. Однако недавно было показано, что в почках содержится как активный эритропоэтин, так и матричная РНК (мРНК), управляющая его синтезом. В небольших количествах эритропоэтин образуется и в других органах–в основном в печени.

Эритропоэтин стимулирует дифференцировку и ускоряет размножение предшественников эритроцитов в костном мозгу. Все это приводит к возрастанию числа гемоглобин–образующих эритробластов. Действие эритропоэтина усиливается многими другими гормонами, в том числе –андрогенами, тироксином и гормоном роста. Различия в числе эритроцитов и содержании гемоглобина в крови мужчин и женщин обусловлены тем, что андрогены усиливают эритропоэз, а эстрогены его тормозят.

Ретикулоциты. Подсчет ретикулоцитов в крови может дать важную для диагностики и лечения информацию о состоянии эритропоэза. Эти клетки служат непосредственными предшественниками эритроцитов. В отличие от эритроцитов, в которых при световой микроскопии не выявляются клеточные структуры, в ретикулоцитах методом прижизненного окрашивания (например, бриллиантовым крезоловым синим) можно обнаружить гранулярные или нитевидные структуры. Эти юные клетки крови выявляются как в костном мозгу, так и в периферической крови. В норме ретикулоциты составляют 0,5–1% общего числа эритроцитов крови; при ускорении эритропоэза доля ретикулоцитов возрастает, а при его замедлении снижается. В случаях усиленного разрушения эритроцитов число ретикулоцитов может превышать 50%. При резко ускоренном эритропоэзе в крови иногда появляются даже нормобласты.



Источник: http://www.medhelp-home.ru/eritrocity/gde-razrushayutsya-eritrocity-u-cheloveka.html

Продолжительность жизни эритроцитов

Эритроциты у человека функционируют в крови максимум 120 дней, в среднем 60—90 дней. Старение эритроцитов связано с уменьшением образования в эритроците количества АТФ в ходе метаболизма глюкозы в этой клетке крови. Уменьшенное образование АТФ, ее дефицит нарушает в эритроците процессы, обеспечиваемые ее энергией, — восстановление формы эритроцитов, транспорт катионов через его мембрану и защиту компонентов эритроцитов от окисления, их мембрана теряет сиаловые кислоты. Старение эритроцитов вызывает изменения мембраны эритроцитов: из дискоцитов они превращаются в эхиноциты, т. е. эритроциты, на поверхности мембраны которых образуются многочисленные выступы, выросты. Причиной формирования эхиноцитов помимо уменьшения воспроизводства молекул АТФ в эритроците при старении клетки является усиленное образование лизолецитина в плазме крови, повышенное содержание в ней жирных кислот. Под влиянием перечисленных факторов изменяется соотношение поверхности внешнего и внутреннего слоев мембраны эритроцита за счет увеличения поверхности внешнего слоя, что и приводит к появлению выростов на мембране. По степени выраженности изменений мембраны и формы эритроцитов различают эхиноциты I, И, III классов и сфероэхиноциты I и II классов. При старении эритроцит последовательно проходит этапы превращения в эхиноцит III класса, теряет способность изменять и восстанавливать дисковидную форму, превращается в сфероэхиноцит и разрушается. Устранение дефицита глюкозы в эритроците легко возвращает эхиноциты I—II классов к форме дискоцита. Эхиноциты начинают появляться, например, в консервированной крови, сохраняемой в течение нескольких недель при 4°С, или в течение 24 ч, но при температуре 37 °С. Это связано с уменьшением образования АТФ внутри клетки, с появлением в плазме крови лизолецитина, образующегося под влиянием лецитин-холестерол-ацетилтранс-ферразы, ускоряющих старение клетки. Отмывание эхиноцитов в свежей плазме от содержащегося в ней лизолецитина или активация в них гликолиза, восстанавливающей уровень АТФ в клетке, уже через несколько минут возвращает им форму дискоцитов.

Разрушение эритроцитов

Гемолиз (от греческого слова haima — кровь, lysis — разрушение) — физиологическое разрушение клеток гемопоэза вследствие их естественного старения. Стареющие эритроциты становятся менее эластичными, вследствие чего разрушаются внутри сосудов (внутрисосудистый гемолиз) или же становятся добычей захватывающих и разрушающих их макрофагов в селезенке, купферовских клетках печени и в костном мозге (внесосудистый или внутриклеточный гемолиз). В норме наблюдается главным образом внутриклеточный гемолиз. При внутриклеточном гемолизе 80—90 % старых эритроцитов разрушается путем фрагментации (эритрорексиса) с последующим лизисом и эритрофагоцитозом в органах ретикулоэндотелиальной системы (ГЭС), преимущественно в селезенке, частично в печени. Нормальный эритроцит проходит синусы селезенки благодаря своему свойству изменять форму. По мере старения эритроциты теряют способность деформироваться, задерживаются в синусах селезенки и секвестрируются. Из поступившей в селезенку крови 90% эритроцитов проходит, не задерживаясь и не подвергаясь фильтрационному отбору. 10% эритроцитов попадает в систему сосудистых синусов и вынуждены выбираться из них, профильтровываясь через поры (фенестры), размер которых на порядок меньше (0,5-0,7 мкм), чем диаметр эритроцита. У старых эритроцитов изменяется ригидность мембраны, они застаиваются в синусоидах. В синусах селезенки снижен рН и концентрация глюкозы, поэтому при задержке в них эритроцитов, последние подвергаются метаболическому истощению. Макрофаги расположены по обеим сторонам синусов, их основная функция элиминировать старые эритроциты. В макрофагах РЭС заканчивается разрушение эритроцита (внутриклеточный гемолиз). В нормальном организме с помощью внутриклеточного гемолиза разрушается почти 90% эритроцитов. Механизм распада гемоглобина в клетках РЭС начинается с одновременного отщепления от него молекулы глобина и железа. В оставшемся тетрапиррольном кольце под действием фермента гемоксигеназы происходит образование биливердина, при этом гем теряет свою цикличность, образуя линейную структуру. На следующем этапе путем ферментативного восстановления биливердин-редуктазой происходит превращение биливердина в билирубин. Билирубин, образованный в РЭС, поступает в кровь, связывается с альбумином плазмы и в таком комплексе поглощается гепатоцитами, которые обладают селективной способностью захватывать билирубин из плазмы. До поступления в гепатоцит билирубин носит название неконъюгированный или непрямой. При высокой гипербилирубинемии небольшая часть может оставаться несвязанной с альбумином и фильтроваться в почках. Паренхиматозные клетки печени адсорбируют билирубин из плазмы с помощью транспортных систем, главным образом белков мембраны гепатоцита — Y (лигандин) и протеина Z, который включается лишь после насыщения Y. В гепатоците неконъюгированный билирубин подвергается конъюгации главным образом с глюкуроновой кислотой. Этот процесс катализируется ферментом уридилдифосфат(УДФ)-глюкуронилтрансферазой с образованием конъюгированного билирубина в виде моно- и диглюкуронидов. Активность фермента снижается при поражении гепатоцита. Она так же, как и лигандин, низкая у плода и новорожденных. Поэтому печень новорожденного не в состоянии переработать больших количеств билирубина распадающихся избыточных эритроцитов и развивается физиологическая желтуха. Конъюгированный билирубин выделяется из гепатоцита с желчью в виде комплексов с фосфолипидами, холестерином и солями желчных кислот. Дальнейшее преобразование билирубина происходит в желчных путях под влиянием дегидрогеназ с образованием уробилиногенов, мезобилирубина и других производных билирубина. Уробилиноген в двенадцатиперстной кишке всасывается энтероцитом и с током крови воротной вены возвращается в печень, где окисляется. Остальной билирубин и его производные поступают в кишечник, в котором превращается в стеркобилиноген. Основная масса стеркобилиногена в толстой кишке подвергается окислению в стеркобилин и выделяется с калом. Небольшая часть всасывается в кровь и выводится почками с мочой. Следовательно, билирубин экскретируется из организма в виде стеркобилина кала и уробилина мочи. По концентрации стеркобилина в кале можно судить об интенсивности гемолиза. От концентрации стеркобилина в кишечнике зависит и степень уробилинурии. Однако генез уробилинурии определяется также функциональной способностью печени к окислению уробилиногена. Поэтому увеличение уробилина в моче может свидетельствовать не только о повышенном распаде эритроцитов, но и о поражении гепатоцитов.

Лабораторными признаками повышенного внутриклеточного гемолиза являются: увеличение содержания в крови неконъюгированного билирубина, стеркобилина кала и уробилина мочи. Патологический внутриклеточный гемолиз может возникнуть при:

наследственной неполноценности мембраны эритроцита (эритроцитопатии);



нарушении синтеза гемоглобина и ферментов (гемоглобинопатии, энзимопатии);

изоиммунологическом конфликте по групповой и R-принадлежности крови матери и плода, избыточном количестве эритроцитов (физиологическая желтуха, эритробластоз новорожденного, эритремия — при количестве эритроцитов более 6-7 х/л

Микросфероциты, овалоциты обладают пониженной механической и осмотической резистентностью. Толстые набухшие эритроциты агглютинируются и с трудом проходят венозные синусоиды селезенки, где задерживаются и подвергаются лизису и фагоцитозу.

Внутрисосудистый гемолиз — физиологический распад эритроцитов непосредственно в кровотоке. На его долю приходится около 10% всех гемолизирующихся клеток. Этому количеству разрушающихся эритроцитов соответствует от 1 до 4 мг свободного гемоглобина (феррогемоглобин, в котором Fе 2+ ) в 100 мл плазмы крови. Освобожденный в кровеносных сосудах в результате гемолиза гемоглобин связывается в крови с белком плазмы — гаптоглобином (hapto — по гречески «связываю»), который относится к α2-глобулинам. Образующийся комплекс гемоглобин-гаптоглобин имеет Мм от 140 до 320 кДа, в то время как фильтр клубочков почек пропускает молекулы Мм меньше 70 кДа. Комплекс поглощается РЭС и разрушается ее клетками.

Способность гаптоглобина связывать гемоглобин препятствует экстраренальному его выведению. Гемоглобинсвязывающая емкость гаптоглобина составляет 100 мг в 100 мл крови (100 мг%). Превышение резервной гемоглобинсвязывающей емкости гаптоглобина (при концентрации гемоглобинаг/л) или снижение его уровня в крови сопровождается выделением гемоглобина через почки с мочой. Это имеет место при массивном внутрисосудистом гемолизе.

Поступая в почечные канальцы, гемоглобин адсорбируется клетками почечного эпителия. Реабсорбированный эпителием почечных канальцев гемоглобин разрушается in situ с образованием ферритина и гемосидерина. Возникает гемосидероз почечных канальцев. Эпителиальные клетки почечных канальцев, нагруженные гемосидерином, слущиваются и выделяются с мочой. При гемоглобинемии, превышающеймг в 100 мл крови, канальцевая реабсорбция оказывается недостаточной и в моче появляется свободный гемоглобин.



Между уровнем гемоглобинемии и появлением гемоглобинурии не существует четкой зависимости. При постоянной гемоглобинемии гемоглобинурия может возникать при более низких цифрах свободного гемоглобина плазмы. Снижение концентрации гаптоглобина в крови, которое возможно при длительном гемолизе в результате его потребления, может вызывать гемоглобинурию и гемосидеринурию при более низких концентрациях свободного гемоглобина крови. При высокой гемоглобинемии часть гемоглобина окисляется до метгемоглобина (ферригемоглобина). Возможен распад гемоглобина в плазме до тема и глобина. В этом случае гем связывается альбумином или специфическим белком плазмы — гемопексином. Комплексы затем так же, как гемоглобин-гаптоглобин, подвергаются фагоцитозу. Строма эритроцитов поглощается и разрушается макрофагами селезенки или задерживается в концевых капиллярах периферических сосудов.

Лабораторные признаки внутрисосудистого гемолиза:

Патологический внутрисосудистый гемолиз может возникнуть при токсических, механических, радиационных, инфекционных, иммуно- и аутоиммунных повреждениях мембраны эритроцитов, дефиците витаминов, паразитах крови. Усиленный внутрисосудистый гемолиз наблюдается при пароксизмальной ночной гемоглобинурии, эритроцитарных энзимопатиях, паразитозах, в частности малярии, приобретенных аутоиммунных гемолитических анемиях, пострансфузионных осложнениях, несовместимости по групповому или резус-фактору, переливании донорской крови с высоким титром антиэритроцитарных антител, которые появляются при инфекциях, сепсисе, паренхиматозном поражении печени, беременности и других заболеваниях.

Для продолжения скачивания необходимо собрать картинку:

Источник: http://studfiles.net/preview//page:2/



Эритроциты у человека разрушаются в

Красные кровяные тельца, функция – перенос кислорода. В 1 мл крови содержится 4,5-5 млн. эритроцитов.

95% сухого вещества эритроцита составляет железосодержащий белок гемоглобин, придающий эритроцитам красный цвет. С кислородом и углекислым газом он образует нестойкие соединения, а с угарным – стойкое, при этом кровь перестает переносить кислород.

Эритроциты образуются в красном костном мозге. В ходе созревания они теряют ядро, их обмен веществ становится незначительным, поэтому они сами почти не потребляют кислород.

Отсутствие ядра приводит к малому сроку жизни эритроцитов – 125 суток. Разрушение эритроцитов происходит в селезенке и печени. Гемоглобин разрушается в печени на белковую часть (глобин) и небелковую – гем. Глобин распадается на аминокислоты, а гем – на железо (запасается в печени) и билирубин (придает желто-зеленый цвет желчи).

Эритроциты имеют форму двояковогнутого диска – так без увеличения объема увеличивается их поверхность, через которую происходит диффузия газов.



Тесты

840-01. Какие элементы крови придают ей красный цвет?

840-02. При неправильной организации печного отопления основную опасность представляет

А) углекислый газ

840-03. Транспорт газов кровью обеспечивают

840-04. Где в организме человека происходит разрушение эритроцитов?



Источник: http://www.bio-faq.ru/bio/bio840.html

Серповидноклеточная анемия. Причины, симптомы, диагностика и лечение патологии

Сайт предоставляет справочную информацию. Адекватная диагностика и лечение болезни возможны под наблюдением добросовестного врача.

Серповидноклеточная анемия (СКА) является наиболее тяжелой формой наследственных гемоглобинопатий (генетически обусловленных нарушений строения гемоглобина). Серповидные эритроциты быстро разрушаются в организме, а также закупоривают множество сосудов по всему организму, что может стать причиной тяжелых осложнений и даже смерти.

  • Первое документированное упоминание о серповидноклеточной анемии датируется 1846 годом.
  • Около 0,5% населения Земли являются здоровыми носителями гена серповидноклеточной анемии.
  • Как больные серповидноклеточной анемией, так и бессимптомные носители мутантного гена практически невосприимчивы к малярии. Это связано с тем, что возбудитель малярии (малярийный плазмодий) способен поражать только нормальные эритроциты.
  • На сегодняшний день серповидноклеточная анемия считается неизлечимым заболеванием, однако при адекватном лечении больные люди могут доживать до глубокой старости и иметь детей.

Что такое эритроциты?

Структура эритроцитов

Что такое гемоглобин?

  • HbA. Нормальный гемоглобин, состоящий из двух альфа и двух бета-цепей. В норме данная форма составляет более 95% гемоглобина взрослого человека.
  • HbA2. Малая фракция, в норме составляющая не более 2% всего гемоглобина взрослого человека. Состоит из двух альфа и двух сигма-цепей глобина.
  • HbF (фетальный гемоглобин). Данная форма состоит из двух альфа и двух гамма-цепей и преобладает в период внутриутробного развития плода. Она обладает большим сродством к кислороду, что обеспечивает тканевое дыхание ребенка в период рождения (когда доступ кислорода из организма матери ограничен). У взрослого человека доля HbF не превышает 1 – 1,5% и встречается в 1 – 5% эритроцитов.
  • HbU (эмбриональный гемоглобин). Начинает образовываться в эритроцитах со 2 недели после зачатия и полностью замещается фетальным гемоглобином после начала кроветворения в печени.

Функция эритроцитов

Где образуются эритроциты?

Как образуются эритроциты?

  • Клетка-предшественница миелопоэза. Эта клетка схожа со стволовой, но обладает меньшим потенциалом к дифференцировке (приобретению специфических функций). Под влиянием различных регуляторных факторов она может начать делиться, при этом происходит постепенная утрата ядра и большинства органоидов, а результатом описанных процессов является образование эритроцитов, тромбоцитов или лейкоцитов.
  • Клетка-предшественница лимфопоэза. Данная клетка обладает еще меньшей способностью к дифференцировке. Из нее образуются лимфоциты (разновидность лейкоцитов).

Процесс дифференцировки (превращения) клетки-предшественницы миелопоэза в эритроцит стимулируется особым биологическим веществом – эритропоэтином. Он выделяется почками, если ткани организма начинают испытывать недостаток в кислороде. Эритропоэтин усиливает образование эритроцитов в красном костном мозге, их количество в крови повышается, что увеличивает доставку кислорода к тканям и органам.

Как разрушаются эритроциты?

Что такое серповидноклеточная анемия?

Причины серповидноклеточной анемии

  • Ребенок, больной серповидноклеточной анемией. Такой вариант возможен в том и только в том случае, если и отец, и мать ребенка больны данным заболеванием либо являются его бессимптомными носителями. При этом ребенок должен унаследовать по одному дефектному гену от обоих родителей (гомозиготная форма заболевания).
  • Бессимптомный носитель. Данный вариант развивается в том случае, если ребенок наследует один дефектный и один нормальный ген, который кодирует образование нормальных цепей глобина (гетерозиготная форма заболевания). В результате в эритроците будет примерно одинаковое количество как гемоглобина S, так и гемоглобина А, которого достаточно для поддержания нормальной формы и функции эритроцита в обычных условиях.

На сегодняшний день не удалось установить точную причину возникновения генных мутаций, приводящих к возникновению серповидноклеточной анемии. Однако исследованиями последних лет выявлен ряд факторов (мутагенов), воздействие которых на организм может приводить к повреждению генетического аппарата клеток, вызывая целый ряд хромосомных заболеваний.


  • Малярийная инфекция. Данное заболевание вызывается малярийными плазмодиями, которые при попадании в организм человека поражают эритроциты, вызывая их массовую гибель. Это может приводить к мутациям на уровне генетического аппарата красных клеток крови, обуславливая появление различных заболеваний, в том числе серповидноклеточной анемии и других гемоглобинопатий. Некоторые исследователи склонны считать, что хромосомные мутации в эритроцитах являются своего рода защитной реакцией организма против малярии, так как серповидные эритроциты практически не поражаются малярийным плазмодием.
  • Вирусная инфекция. Вирус представляет собой неклеточную форму жизни, состоящую из нуклеиновых кислот РНК (рибонуклеиновой кислоты) или ДНК (дезоксирибонуклеиновой кислоты). Данный инфекционный агент способен размножаться только внутри клеток живого организма. Поражая клетку, вирус встраивается в ее генетический аппарат, изменяя его таким образом, что клетка начинает продуцировать новые фрагменты вируса. Данный процесс может вызывать возникновение различных хромосомных мутаций. В качестве мутагена могут выступать цитомегаловирусы, вирусы краснухи и кори, гепатита и многие другие.
  • Ионизирующее излучение. Представляет собой поток невидимых невооруженным глазом частиц, которые способны воздействовать на генетический аппарат абсолютно всех живых клеток, приводя к возникновению множества мутаций. Количество и выраженность мутаций зависит от дозы и длительность облучения. Помимо естественного радиационного фона Земли дополнительными источниками радиации могут стать аварии на АЭС (атомных электростанциях) и взрывы атомных бомб, частные рентгенологические исследования.
  • Вредные факторы окружающей среды. В данную группу входят различные химические вещества, с которыми сталкивается человек в процессе своей жизнедеятельности. Сильнейшими мутагенами являются эпихлоргидрин, используемый в производстве множества медикаментов, стирол, использующийся при изготовлении пластмасс, соединения тяжелых металлов (свинца, цинка, ртути, хрома), табачный дым и множество других химических соединений. Все они обладают высокой мутагенной и канцерогенной (вызывающей рак) активностью.
  • Лекарственные препараты. Действие некоторых медикаментов обусловлено их влиянием на генетический аппарат клеток, что связано с риском возникновения различных мутаций. Наиболее опасными лекарственными мутагенами являются большинство противоопухолевых препаратов (цитостатиков), препараты ртути, иммунодепрессанты (угнетающие деятельность иммунной системы).

Симптомы серповидноклеточной анемии

  • Наличие гемоглобина F. Чем его больше, тем менее выражена симптоматика заболевания. Этим объясняется отсутствие симптомов СКА у новорожденных – большая часть HbF замещается на HbA к шестому месяцу жизни ребенка.
  • Климатические и географические условия. Давление кислорода во вдыхаемом воздухе обратно пропорционально высоте над уровнем моря. Другими словами, чем выше находится человек, тем меньше кислорода поступает в его легкие при каждом вдохе. Симптомы серповидноклеточной анемии могут проявляться и ухудшаться уже через несколько часов после поднятия на высоту более 2000 метров над уровнем моря (даже у людей с гетерозиготной формой заболевания). Больным СКА абсолютно противопоказано проживание в условиях высокогорья (некоторые города Америки и Европы располагаются на высоте в несколько километров).
  • Социально-экономические факторы. Доступность и своевременность лечения осложнений серповидноклеточной анемии также влияет на выраженность клинических проявлений заболевания.

Внешние проявления серповидноклеточной анемии обусловлены, в первую очередь, скоростью разрушения (гемолиза) серповидных эритроцитов (срок жизни которых укорачивается до 10 – 15 дней), а также различными осложнениями, возникающими в результате закупорки серповидными эритроцитами капилляров по всему организму.

  • симптомы, связанные с разрушением эритроцитов;
  • гемолитические кризы;
  • симптомы, обусловленные закупоркой мелких сосудов;
  • увеличение селезенки;
  • склонность к тяжелым инфекциям.

Симптомы, связанные с разрушением эритроцитов

  • Бледность. Развивается из-за уменьшения количества красных клеток в крови. Кожа и видимые слизистые оболочки (полости рта, конъюнктивы глаза и другие) становятся бледными и сухими, кожа становится менее эластичной.
  • Повышенная утомляемость. Дети с серповидноклеточной анемией характеризуются вялым и малоподвижным образом жизни. При любой физической нагрузке увеличивается потребность организма в кислороде, то есть развивается гипоксия. Это приводит к тому, что большее число эритроцитов приобретают серповидную форму и разрушается. Транспортная функция крови снижается, в результате чего быстро появляется чувство усталости.
  • Частые головокружения. Обусловлены недостатком кислорода на уровне головного мозга, что является опасным для жизни состоянием.
  • Одышка. Данный термин подразумевает увеличение частоты и глубины дыхательных движений, возникающее в результате ощущения нехватки воздуха. У больных серповидноклеточной анемией этот симптом обычно возникает в периоды физической активности, однако возможно его появление и в покое (при тяжелых формах заболевания, в условиях высокогорья).
  • Отставание в росте и развитии. Ввиду того, что транспортная функция крови значительно снижена, ткани и органы не получают достаточного количества кислорода, необходимого для нормального роста и развития организма. Следствием этого является отставание в физическом и умственном развитии — дети позже, чем их сверстники, начинают ходить, говорить, им хуже дается школьная программа. Также отмечается задержка в половом созревании ребенка.
  • Желтушность кожи. Пигмент билирубин, выделяющийся в кровоток при разрушении эритроцитов, придает коже и видимым слизистым оболочкам желтоватую окраску. В норме данное вещество довольно быстро нейтрализуется в печени и выводится из организма, однако при серповидноклеточной анемии количество разрушающихся эритроцитов настолько велико, что печень оказывается не в состоянии обезвредить весь образующийся билирубин.
  • Темная моча. Цвет мочи изменяется из-за увеличения концентрации билирубина в ней.
  • Избыток железа в организме. Данное состояние может развиться в результате тяжелых, часто повторяющихся гемолитических кризов, когда в кровоток выделяется слишком много свободного железа. Это может привести к возникновению гемосидероза – патологического состояния, характеризующегося отложением оксида железа в различных тканях (в ткани печени, селезенки, почек, легких и так далее), что приведет к нарушению функции пораженных органов.

Гемолитические кризы

  • тяжелая генерализованная инфекция;
  • тяжелая физическая работа;
  • подъем на большую высоту (более 2000 метров над уровнем моря);
  • воздействие чрезмерно высоких или низких температур;
  • обезвоживание (истощение запасов жидкости в организме).

Для гемолитического криза характерно быстрое образование большого числа серповидных эритроцитов, которые закупоривают мелкие сосуды и разрушаются в селезенке, печени, красном костном мозге и других органах, а также непосредственно в сосудистом русле. Это приводит к резкому уменьшению количества красных клеток крови в организме, что проявляется нарастанием одышки, частыми головокружениями (вплоть до потери сознания) и другими симптомами, описанными ранее.

Симптомы, обусловленные закупоркой мелких сосудов

  • Болевые кризы. Возникают в результате закупорки сосудов, питающих определенные органы. Это приводит к развитию недостатка кислорода на тканевом уровне, что сопровождается приступами сильной острой боли, которые могут длиться от нескольких часов до нескольких дней. Результатом описанных процессов является гибель участка ткани или органа, доставка кислорода к которому нарушена. Болевые кризы могут возникать внезапно на фоне полного благополучия, однако чаще всего им предшествуют вирусные и бактериальные инфекции, выраженная физическая нагрузка или другие состояния, сопровождающиеся развитием гипоксии.
  • Кожные язвы. Развиваются в результате закупорки мелких сосудов и нарушения кровообращения в различных участках кожных покровов. Пораженный участок изъязвляется и довольно часто инфицируется, что может стать причиной развития тяжелых инфекционных заболеваний. Наиболее характерным расположением язв является кожа верхних и нижних конечностей, однако возможно поражение кожи туловища, шеи и головы.
  • Нарушения зрения. Развиваются в результате закупорки артерии, питающей сетчатку глаза. В зависимости от диаметра пораженного сосуда могут появляться различные нарушения, начиная от снижения остроты зрения и заканчивая отслойкой сетчатки и развитием слепоты.
  • Сердечная недостаточность. Причиной поражения сердца может быть закупорка серповидными эритроцитами коронарных артерий (сосудов, доставляющих кровь к сердечной мышце) и развитие острого инфаркта миокарда (гибели части сердечной мышцы, вызванной нарушением доставки кислорода). Кроме того, длительная анемия и гипоксия рефлекторно вызывают увеличение частоты сердечных сокращений. Это может привести к гипертрофии (увеличению в размерах) сердечной мышцы с последующим истощением компенсаторных механизмов и развитием сердечной недостаточности.
  • Гематурия (кровь в моче). Данный симптом может появляться в результате тромбоза почечных вен и поражения нефронов (функциональных единиц почечной ткани, в которых происходит образование мочи), в результате чего они становятся проницаемыми для эритроцитов. При длительном течении заболевания может наступить гибель более 75% нефронов и развитие почечной недостаточности, что является неблагоприятным прогностическим признаком.
  • Приапизм. Данный термин подразумевает спонтанное возникновение длительной и болезненной эрекции полового члена у мужчин. Этот симптом обусловлен закупоркой мелких капилляров и вен, через которые происходит отток крови от органа, что иногда может привести к развитию импотенции.
  • Изменение структуры костей. Для серповидноклеточной анемии характерны частые инфаркты костной ткани, что приводит к изменению структуры костей, они становятся менее прочными. Кроме того длительная гипоксия стимулирует выделение большого количества эритропоэтина почками, что приводит к разрастанию эритроидного ростка кроветворения в красном костном мозге и деформации костей черепа позвонков, ребер.
  • Поражение суставов. Отмечаются припухлость и болезненность суставов конечностей (стоп, голеней, кистей, пальцев тук и ног).
  • Неврологические проявления. Являются результатом закупорки артерий, питающих различные участки головного и спинного мозга. Неврологическая симптоматика у больных серповидноклеточной анемией может проявляться нарушениями чувствительности, парезами (нарушением двигательных функции), плегиями (полной утратой двигательных функций в конечностях), а также острым ишемическим инсультом (возникающим в результате закупорки артерии головного мозга), что может привести к смерти человека.

Увеличение селезенки

Склонность к тяжелым инфекциям

Диагностика серповидноклеточной анемии

Общий анализ крови

Кровь берут утром, натощак. Накануне перед сдачей анализа не рекомендуется употреблять алкогольные напитки, курить или принимать наркотические препараты. Непосредственно перед взятием крови следует согреть пальцы левой руки, что улучшит микроциркуляцию и облегчит процедуру.

Забор крови также производится медицинской сестрой. Правила подготовки к анализу такие же, как при взятии крови из пальца. Обычно кровь берут из подкожных вен локтевой области, расположение которых довольно легко определить.

Несколько капель полученной крови переносится на предметное стекло, окрашивается специальными красителями (обычно метиленовым синим) и исследуется в световом микроскопе. Данный метод позволяет примерно определить количество клеточных элементов крови, оценить их размеры и строение.



Большинство современных лабораторий оборудованы гематологическими анализаторами – аппаратами, позволяющими быстро и точно определить количественный состав всех клеточных элементов, а также многие другие параметры крови.

4,0 – 5,0 х/л.

3,5 – 4,7 х/л.

Биохимический анализ крови

Электрофорез гемоглобина

Ультразвуковое исследование

  • увеличение селезенки и печени;
  • наличие инфарктов во внутренних органах (в селезенке, печени, почках и других);
  • нарушение кровообращения во внутренних органах;
  • нарушение кровотока в конечностях.

Рентгенологическое исследование костей

  • деформацию и расширение тел позвонков (из-за множественных инфарктов);
  • деформацию и истончение костей скелета (из-за избыточного разрастания костномозговой ткани);
  • наличие остеомиелита (гнойного инфекционного процесса в костной ткани).

Устранение осложнений серповидноклеточной анемии

  • правильный образ жизни;
  • повышение количества эритроцитов и гемоглобина;
  • кислородотерапия;
  • устранение болевого синдрома;
  • устранение избытка железа в организме;
  • профилактика и лечение инфекционных заболеваний.

Образ жизни пациентов с серповидноклеточной анемией

  • проживать на высоте не более 1500 метров над уровнем моря;
  • проживать в зоне с умеренным климатом (исключающим воздействие экстремально низких или высоких температур);
  • употреблять не менее 1,5 литров жидкости ежедневно;
  • исключить прием алкогольных напитков и наркотиков;
  • отказаться от курения (как самому больному человеку, так и членам его семьи);
  • избегать тяжелых физических нагрузок;
  • выбирать профессию, не связанную с тяжелой физической работой или воздействием высоких/низких температур.

Соблюдение перечисленных выше правил может предотвратить появление любых симптомов серповидноклеточной анемии у людей с гетерозиготной формой заболевания, однако пациентам с гомозиготной формой требуются и другие лечебные мероприятия.

Повышение количества эритроцитов и гемоглобина

Повышение количества эритроцитов и уровня гемоглобина



Кислородотерапия

Устранение болевого синдрома

Устранение избытка железа в организме

Профилактика и лечение инфекционных заболеваний

Медикаментозное лечение инфекционных заболеваний

Профилактика серповидноклеточной анемии

Рекомендуем прочесть:

Комментировать или поделиться опытом:

Копирование информации без гиперссылки на источник запрещено.

Регистрация

Вход в профиль

Регистрация

Это займет у Вас меньше минуты

Вход в профиль

Войдите при помощи профиля в социальной сети или ранее зарегистрированного профиля на сайте

Источник: http://www.polismed.com/articles-serpovidnokletochnaja-anemija-prichiny-simptomy-diagnostika-lechenie.html